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To obtain accurate solutions to the time dependent Schrodinger equation, a “product for- 
mula” algorithm has been proposed in literature which is both explicit and unconditionally 
stable. In this paper the accuracy of this algorithm is considered for a few basic problems in 
mathematical physics, viz. the convection equation and the diffusion equation, in addition to 
the Schrodinger equation. From a theoretical analysis, which is conlirmed by numerical 
experiments, it is concluded that the Rroduct-formula method can indeed produce accurate 
solutions, but only for small time steps so that the unconditional stability is not of very much 
use. A comparison is also made with standard finite difference methods, such as leap-frog and 
Crank-Nicholson. 6 1991 Academic Press, Inc. 

1. INTRODUCTION 

In order to obtain time-accurate solutions of the multi-dimensional Schrodinger 
equation, an algorithm using product formulas (PF) has been put forward by 
De Raedt [ 11. It is a splitting method, the idea of which is, of course, not new 
[4, 63. The splitting is, however, not based on dimensions or processes with 
different time scales, but on a division of the grid into overlapping subsets of two 
grid-points each, for which the semi-discretized equations can be solved exactly 
with respect to time. The resulting algorithm is efficient, very well vectorizable and 
can be extended to multi-dimensional cases relatively easily. This paper has the 
purpose to see whether the idea is useful more generally in computational physics. 
Therefore, the method is described in this paper for three schematic cases: the 
Schriidinger, convection (simple-wave), and diffusion equations. The notation is 
given in standard mathematical form in contrast with the theoretical-physics 
notation of De Raedt’s paper. 

2. DESCRIPTION FOR SCHR~DINGER EQUATION 

The model equation is: 

aC- jKd’“,() 
at a2 . 
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Semi-discretizing this on a grid with size Ax, using central differences in space, a set 
of ordinary differential equations results: 

dc 
z+Ac=O, 

where A is a tridiagonal matrix 
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with a, At =a3 At= - $Z, a2 At =E.i, and ;1=2KAt/Ax2. Some problems in 
theoretical physics have this discrete form intrinsically. For simplicity, we consider 
periodic boundary conditions, such that cj+,,, = cj. The formal solution of Eq. (2) 
over one time step At is 

C .+,=exp(-AAt)c,. 

As shown by Strang [7], if A = A, + A, this can be split as follows 

C n+,=exp(-A, At)exp(-A,At)c,. 

The PF splitting is based on overlapping pairs of grid points: 

(3) 
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and A, similarly with the blocks shifted over one grid interval. This is a first-order 
approximation in time unless the operators A,,, commute [ 1,4, 5, 71, which is not 
the case here. In this way, the system has been split into small 2 x 2 subsystems 
which can be solved exactly. It is shown in the Appendix that the exact solution of 
one such system amounts to multiplication by the matrix 

Bee-ii/2 ‘OS in 

( 

‘. 1 

i sin :J. 
‘,“dyfi 

2 > 
(5) 

which is constant for linear problems. It is easily checked that the eigenvalues of B 
are unity in absolute value, so that the method is unconditionally stable. Yet the 
algorithm is effectively explicit due to the analytic evaluation of the matrix B. 
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However, it may be argued that the method is implicit in principle as it requires the 
solution of 2 x 2 systems of equations for the field variables at the new time level. 
That the matrices corresponding to these systems are inverted analytically does not 
change the principle. Similar single-grid-interval schemes are known under the 
names of Preissmann or Wendroff [S] for hyperbolic equations and for diffusion- 
like problems a comparable idea is given in [3]. 

3. ACCURACY FOR WAVE PROPAGATION: SEMI-DISCRETIZATION 

The accuracy is analyzed here in terms of harmonic wave propagation, which can 
be interpreted physically [S]. The solution of the differential equation with periodic 
boundary conditions is 

c(x, 2) = exp{ &(x - Kkt)}. 

The corresponding exact solution of the semi-discrete system (2) is 

(6) 

c,( 1) = exp{ ijt - 2iKt( 1 - cos t)/dx’}, 

where 5 = k Ax = 2x/m (m = number of grid points per wave length). Comparison 
of (6) and (7) shows that there is a relative phase shift or relative propagation 
speed 

c, = 2( 1 - cos 5)/t’ (8) 

which should be close to unity. There is no amplitude error. The expression (8) 
is illustrated in Fig. 1 which shows that c, approaches unity with second-order 
accuracy for small 5 as expected. 

4. ACCURACY OF TIME DISCRETIZATION 

The discrete solution defined by Eq. (4) has the form 

where n = t/At is the number of time steps and G is the amplification matrix for 
a complete time step. For one wave period of the semi-discrete solution 
n = l/1( 1 - cos 5). Due to the splitting, the eigenvectors of G can be expected to 
have some alternating structure: 

24 2, =ci 2 u2,p2=u21’u 0; uzj+, = a2uy_ 1 = a%, 

with constants CI and u1 to be determined and normalized such that u. = 1 for sim- 
plicity. The periodic boundary condition requires that a” = 1 or o(, = exp(2zij/m). 
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FIG. 1. Accuracy of semi-discretization for the Schriidinger, convection, and diffusion equations as 
a function of r = 2x/m (m = number of points per wave length). 

j= 1, m. The initial condition allows only the value j= 1. There are two corre- 
sponding eigenvalues pi.2 with eigenvectors u(l,*) which have been determined 
numerically. The numerical solution takes the form 

c, = c,p;u (I) + c*p;u(*) (10) 

with coefficients C,,2 determined by the initial condition. One of these terms 
corresponds to the exact solution, and the other is parasitic. Then even- and odd- 
numbered values separately behave as harmonic functions which can be compared 
with the semi-discrete solution (7) to identify the effect of time discretization 
in terms of wave damping and phase shift. There is no physical damping, so a 
numerical damping factor can be defined as 

dn = IPI”. (11) 

The argument of p gives rise to a phase shift, or a relative speed of propagation: 

c, = - arg(p)/A( 1 - cos 5). (12) 

Both quantities should be close to unity to have any accuracy. For the “physical” 
wave component, the behaviour of c, and u ‘1” is shown numerically in Fig. 2. It is 
remarkable that 1 -c, depends quadratically on At, even though the method as a 
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FIG. 2. Accuracy of time discretization for Schrodinger equation, (a), (b) relative wave speed for 
m = 20 and 8 points, respectively, per wave length; (c), (d) error in eigenvector generating spurious 
mode for m=20 and 8, respectively. PF= product formula with order indicated; LF = leap-frog; 
CN = Crank-Nicolson. In (a), the line for LF is below the figure margin. 

whole is only first-order accurate. There is no wave damping. It is found that ~(1’) 
is real, so only its absolute value is shown. 

The physical component will have a small oscillation around the exact initial 
condition. This oscillation will be compensated by the spurious component with 
strength 

c, = (1 - uy))/(u\2) - u’,‘)) 

which will then persist in the solution but behave in a completely unphysical way. 
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5. HIGHER ORDER VARIANTS 

It is well known [4,7] that a second-order variant can be constructed by a 
symmetric formula: 

C n+,=exp(-fA,dt)exp(-A,dt)exp(-+A,dt)c,. (13) 

The half time-step operations can be combined except at those instants of time 
where one wants to have output. Thus, the amount of work is hardly greater than 
for the first-order method. 

The accuracy analysis in terms of wave propagation can be performed along the 
same lines as above. It can be shown that the eigenvectors have the same structure 
as before and, due to the periodic boundary conditions, we find the same values 
for c1 as above. The values of p’ and u ‘1” have been determined numerically. The 
damping and wave-speed characteristics are the same as those for the first-order 
method (Fig. 2). The value of u (1l) is now complex with unit absolute value. Its 
phase angle, shown in Fig. 2c, behaves with second-order accuracy in time. 

De Raedt, being interested in long-time integrations, developed a variant of 
fourth-order accuracy in time, which is perhaps less standard. The idea is to include 
a correction step in the second-order method, such that the second-order error is 
cancelled: 

C n+I=exp(-fA, dt)exp(-tA,dt)exp(dt3K) 

xexp(-$A,dt)exp(-+A,dt)c, (14) 

with K= [A, +2A,, [A,, A,]]/24 in which [A,, A21 =A,A,-A,A, by definition. 
Some details are given in the Appendix, 

The numerical properties are determined in the same way as above. The results 
are included in Fig. 2. The factor u(,‘) is now complex and clearly shows the fourth- 
order dependence on 1 as does the relative wave speed. 

If the resolution gets worse, i.e., the number of points per wave length m gets 
smaller, the time-accuracy of the PF methods is not very much affected (Figs. 2a 
and 2b). However, the spatial phase error does, of course, get larger, so any advan- 
tage of time accuracy is useful only if spatial errors are not important for some 
reason (e.g., because the problem is intrinsically discrete). 

6. NUMERICAL EXPERIMENTS 

Some numerical experiments were performed to check the theoretical conclu- 
sions. One single harmonic wave was considered with periodic boundary condi- 
tions. The results are shown for m = 20 points per wave length in Fig. 3 in 
comparison with the exact semi-discrete solution, The spatial discretization gives a 
phase error of about 1%. 
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FIG. 3. Numerical experiments with first-order PF method for the Schriidinger equation for 1= 0.5 
(a) or 2 (b) compared with exact semi-discrete solution. 

Considering the wave speed according to Fig. 2a, we expect c, = 1.02 for PFl and 
PF2 at 1= 0.5 and 0.998 for PF4. At 2 = 2, the values are 1.6 and 0.65, respectively. 
In Figs. 3a and b this is indeed observed. 

The observation of the spurious component is a little more involved as it inter- 
feres with the oscillating part of the main wave and both oscillations propagate at 
completely different speeds. In the worst case, the two reinforce one another to the 
double amplitude and Fig. 3 refers to the times approximately at which this occurs, 
i.e., at 0.5 wave period in Fig. 3a and 0.8 in 3b. The amplitudes expected from the 
theory for PFl are 0.035 at A = 0.5 and 0.18 at 2 = 2 and this agrees with Fig. 3. For 
the PF2 and PF4 methods, smaller values are observed which have not been 
checked numerically, but the general behaviour is in agreement with the theory. 

581!97/2-7 
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However, even for the fourth-order method the spurious oscillations are non- 
negligible at this value of 2. The conclusion is that solutions with any reasonable 
accuracy can only be obtained for small A. 

7. COMPARISON WITH FINITE-DIFFERENCE METHODS 

A very simple explicit finite-difference method for solving the Schrodinger 
equation (1) is the leap-frog method: 

(15) 

where cJ’ = c(j Ax, n At). The spatial discretization is identical to that in Eq. (2) so 
the same numerical error is involved. Solutions of the form cj” = p” exp(ijr) result 
with 

PI,*= -izf (1 -zz}l’*, 

where z = A( 1 - cos 5). It is easily checked that the requirement for stability is ;1< i. 
Of the two possible roots, one is spurious. The latter is set up by the second initial 
condition required by Eq. (15). It has the same wave length as the physical wave, 
but it oscillates in time. This may introduce a very unpleasant time-splitting 
behaviour, which can, however, be controlled by introducing some smoothing in 
time. For some applications, this may not be acceptable (e.g., [2]). Note that the 
type of spurious solution is different in behaviour from the one in the PF method. 

For the leap-frog method there is no wave damping ( 1 pi = 1). The accuracy of the 
time-discretization is expressed by the relative wave speed for the physical compo- 
nent in comparison with the semi-discrete solution: 

c, = atan { z/Ji?}/z (16) 

The error is so small that it does not show up in Fig. 2a; it does, however for 
smaller resolution (m = 8) in Fig. 2b. 

Another standard finite-difference method that can be used for comparison is the 
Crank-Nicolson method: 

,;+I- ci” = i/l/4( c;;: - 2ci” + ’ + ci”t : + c;+ 1 - 2cj” + cj”- 1). (17) 

This method is unconditionally stable but requires the solution of a tridiagonal 
system of equations. In multi-dimensional cases, a splitting method will be used 
(alternating direction). The method is of second-order accuracy in space and time, 
does not produce any wave damping nor spurious solutions, and its relative wave 
speed in comparison with the semi-discrete solution reads: 

c, = 2 atan(tz)/z (18) 
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(see Fig. 2). Both finite-difference methods compare favourably with the PF 
methods for not-too-coarse grids (m = 20). However, they are much more sensitive 
to coarser grids than PF. 

In one dimension with m grid points, the PFl and PF2 methods require 8m 
multiplying operations per time step; PF4 even 32m. For Crank-Nicolson, the 
operation count is 6m and for leap-frog, 2m; so both will be more efficient than the 
PF methods even if the accuracies are the same. Figure 2 shows that only PF4 will 
eventually be more efficient than the others if a very high accuracy is sought. 

8. CONVECTION EQUATION 

As a second example of great practical interest we consider the convection or 
simple-wave equation 

g+ug=o. (19) 

The procedure for the PF algorithm is the same as above. The coefficients of the 
semi-discretised equation are 

a, At= -$a, a2 = 0, a3 At = $a, 

where o = u At/Ax is the Courant number. This gives 

BE “,p,” i; 

( 

. 1 
-s’nlTa . 

> 
(20) cos ?a 

It is a standard exercise to show that the relative phase error for the semi-discrete 
solution is 
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FIG. 4. As Fig. 2, for convection equation, M = 20. 
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(cf. Fig. 1). The number of time steps to cover one semi-discrete wave period is 
n = 211/a sin 5. Analysis of the time accuracy for the PF methods shows that there 
is no wave damping. The relative speed of propagation is given in Fig. 4, together 
with the values for the finite-difference methods, which turn out to be identical to 
Eqs. (16) and (18) if z is replaced by z = c sin 4. The leap-frog method is stable if 
101 < 1. The “wiggle” in the line for PF4 is caused by a change of sign of c, - 1, 
which is only coarsely represented in the figure. Coarse-grid values are not shown, 
but the behaviour is similar to the Schrijdinger case. Some numerical experiments 
are shown in Fig. 5. 

Again, there is no difference in numerical wave speed between the first- and 
second-order PF methods. Theoretically, relative wave speeds for PFl or PF2, and 
PF4 are 0.99 and 1.0002 for G = 0.5 and 0.82 and 1.025 for u = 2. These values can 
be recognized in Fig. 5. 
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FIG. 5. Numerical experiments with the PF method (orders 1, 2, and 4) for the convection equation 
with Courant number CT = 0.5 (a) or 2 (b). 
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The spurious components are again shown at the worst instant of time. For PFl 
the theoretical amplitudes are 0.14 for c = 0.5 and 0.2 for o = 2, which is in agree- 
ment with the figures, where the doubled values are seen. Figure 5b shows the 
better accuracy of PF2. The fourth-order method is considerably more accurate, at 
least for moderate values of g. In this case, it is also more accurate than the LF and 
CN methods. 

9. DIFFUSION EQUATION 

Finally, the same procedure is applied to the standard diffusion equation 

ac z-D$=O. (22) 

Semi-discretising gives 

a, At=a, At= --;A, a, At=Il, 

where I = 20 At/Ax* is the diffusion parameter. This gives 

Bze-V2 cash f,? sinh ill 
> sinh $2 cash 41 ’ (23) 

The semi-discrete solution shows only an error in the damping rate. After one 
relaxation time t = (k2D)-‘, the ratio between the amplitudes of the semi-discrete 
and continuous solutions is 
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FIG. 6. As Fig. 2 for diffusion, m = 20. Wave-propagation now characterized by wave-damping 
factor d,. 
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as shown in Fig. 1. The number of time steps is chosen to cover one relaxation time 
for the semi-discrete case n = l/n( 1 - cos c). 

The PF methods and the standard finite-difference methods have no phase errors 
either. A measure for the numerical damping due to time discretization is 

d,,=e (PI”. (25) 
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FIG. 7. Numerical experiments with the PF method (orders 1, 2, and 4) for the diffusion equation 
with diffusion parameter 1, = 0.5 (a) and 2 (b). 
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The leap-frog method cannot be used in this case as it is unconditionally unstable. 
For the Crank-Nicholson method we find a damping factor 

(26) 

with P = A( 1 - cos 5). The various relations are illustrated in Fig. 6. The behaviour 
is comparable to the previous cases. It is to be noted that the fourth-order correc- 
tion matrices Cj (cf. Appendix) in this case have real eigenvalues, one of which is 
greater than unity (though very slightly), which means that PF4 is actually unstable 
for the diffusion equation. This does not show up for moderate values of ;1, but a 
very large growth factor was indeed observed in a numerical experiment for A= 5. 

Some numerical experiments are shown in Fig. 7. For A = 0.5 accurate solutions 
are found, although the spurious component is still visible. For 1= 2, the amplitude 
error is quite apparent; theoretical values of d, = 1.28 for PFl or PF2, and 2.3 for 
PF4 are confirmed. The spurious components do not propagate, so the amplitude- 
doubling effect does not occur; they have, however, a different damping rate and 
therefore get more serious as time progresses. Only PF4 is acceptable in this 
respect. 

10. CONCLUSIONS 

The product-formula algorithm is equivalent to standard finite difference 
methods as far as spatial differencing is concerned. The potential advantage ‘of 
unconditional stability combined with an effectively explicit algorithm turns out to 
be unexploitable, as large numerical errors will be involved. 

Spurious oscillations may occur in all PF methods; they are reasonably small 
only for moderate values of LS or 1. These oscillations are particularly important in 
the PFl case. The fourth-order PF algorithm may be used to obtain a high- 
accuracy time integration; it will eventually be superior to standard (second-order) 
finite-difference methods. 

An attractive feature of the PF methods is that their time-dicretization errors are 
only slightly affected by the spatial resolution, so that good temporal accuracy can 
be obtained in cases where a modest spatial resolution is sufficient. 

APPENDIX 

The construction of the matrix B for the product-formula algorithm is illustrated 
here for the Schriidinger case. Consider one pair of grid points from Eq. (4); the 
matrix is 
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It has eigenvalues p1,2 with corresponding left and right eigenvectors w,,? and vl,* 
such that 

w;A, At=pjw; and A, Atvj=piv, 

and normalization 

wT.v,=6ti. 

For some initial vector c, we can write 

c = c c, vi with C, = w,’ . c. 

Then 

exp(-A,At)c=~Cjexp(-A,At)vj=~Cjexp(-~j)vj=Bc 

with 

B=v,wfe-P'+v,wfe-f12. 

For the present case, we find 

PI=& vT=(L 11, wT=$(l, 1) 

p2 = Iii, vT=(l, -l), wT=i(l, -1) 

which gives the matrix B mentioned in Eq. (5). 
The fourth-order correction shown in Eq. (14) involves the matrix 

K = a:/12 

’ 0 -2a, 0 -a3 0 0 0 0 
-2a3 0 a, 0 2a, 0 0 0 . 

0 a3 0 -2a, 0 -a3 0 0 . 
--al 0 -2a, 0 a, 0 2a, 0 . 

0 2a, 0 a3 0 -2a, 0 -a3 . 

This can be split into four matrices involving pairs of grid points, only one of which 
is shown as an example, 

0 0 0 -a,0 0 0 0 . 
000 00000~ 

K, 

000 0 0 . 

O-a,0 = a:/12 

-a, 0 0 0 0 0 0 0 . . 
000 000 0 . -a3 
0 0 -a, 0 0 0 0 0 . 1 



PRODUCT-FORMULA ALGORITHMS 351 

In the same way as for the basic algorithm, we can write 

exp(At3Kj) = C, 

which consists of 2 x 2 matrices for pairs of grid points. A complete time-step for 
the fourth-order method then reads 

in which E and 0 evidently indicate even and odd pairs of points. There is now no 
possibility of combining sub-steps as in the second-order case, so that the total 
amount of work is abour four times greater than for the first- or second-order 
methods. 
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